###
DOI:
飞控与探测:2025,8(2):82-92
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于Transformer的毫米波雷达/激光雷达/相机融合3D目标检测方法
(1.中北大学 信息与通信工程学院;2.中北大学 仪器与电子学院)
Transformer-based Radar/Lidar/Camera Fusion Solution for 3D Object Detection
(1.School of Information and Communication Engineering, North University of China;2.School of Instrument and Electronics, North University of China)
摘要
相似文献
参考文献
本文已被:浏览 63次   下载 0
    
中文摘要: 针对单一传感器在环境感知任务中的性能局限性,提出了一种基于Transformer的毫米波雷达/激光雷达/相机融合3D目标检测方法。该方法由三个关键模块组成:1)相机模块,将图像特征与初始3D目标预测结合,进行视觉增强;2)雷达模块,针对毫米波雷达点云稀疏问题,提出时序多帧融合算法,对连续5帧毫米波雷达数据进行融合,同时提出点云加权融合算法,在毫米波雷达与激光雷达的点云描述能力互补的基础上,构建增强的雷达点云;3)融合模块,采用Transformer解码器,充分整合雷达点云与相机特征,以提升3D目标检测性能。在自制城市道路数据集上进行了实验,并基于nuScenes数据集指标进行评估。实验结果表明,相较于现有方法,本文方法在mAP指标上提升6.38%,在NDS指标上提升5.93%。
Abstract:In response to the performance limitations of single sensors in environmental perception tasks, this paper proposes a transformer-based multimodal 3D object detection method that integrates millimeter-wave radar, LiDAR, and camera data. The proposed framework consists of three key modules: (1) Camera module, which combines image features with initial 3D object predictions to enhance visual representation; (2) Radar module, which addresses the sparsity issue of millimeter-wave radar point clouds by introducing a temporal multi-frame fusion algorithm that aggregates data from five consecutive frames. Additionally, a point cloud weighted fusion algorithm is proposed to construct an enhanced radar point cloud by leveraging the complementary characteristics of millimeter-wave radar and LiDAR; (3) Fusion module, which employs a Transformer decoder to effectively integrate radar point clouds and camera features, thereby improving 3D object detection performance. Experiments are conducted on a custom urban road dataset, and the proposed method is evaluated based on metrics from the nuScenes dataset. The results demonstrate that, compared to existing methods, the proposed approach achieves a 6.38% improvement in mAP and a 5.93% increase in NDS.
文章编号:20250210     中图分类号:TN958; TN957.52    文献标志码:
基金项目:山西省基础研究计划(202303021211150);航空科学基金(202400080U0001);山西省量子传感、精密测量重点实验室基金(201905D121001);山西省研究生创新实践项目(2024SJ244)
引用文本:
陈坤泽,刘晓晨,申冲.基于Transformer的毫米波雷达/激光雷达/相机融合3D目标检测方法[J].飞控与探测,2025,8(2):82-92.

分享按钮