###
DOI:
飞控与探测:2025,8(2):56-63
本文二维码信息
码上扫一扫!
基于多层次蜣螂优化的卫星集群博弈任务分配方法
(1.西北工业大学 自动化学院;2.中国西安卫星测控中心)
Satellite Cluster Task Allocation Method Based on Multi-Layer Dung Beetle Optimization Game
(1.School of Automation, Northwestern Polytechnical University;2.Xi 'an Satellite Measurement and Control Center)
摘要
相似文献
参考文献
本文已被:浏览 40次   下载 35
    
中文摘要: 针对卫星集群博弈任务分配问题,提出一种基于多层次蜣螂优化(Multi-Stage Dung Beetle Optimization,MDBO)算法的任务分配方法。首先,考虑卫星燃料消耗、轨道转移时长和博弈收益三个优化指标,考虑任务、燃料和载荷等约束条件,实现优化数学模型的构建;然后,设计MDBO算法进行求解,引入“蜣螂强盗粒子”,解决粒子群算法易陷入局部最优解问题,采用多层次优化机制将复杂的卫星博弈任务分配问题进行分解和降维。仿真结果表明,相比DBO算法,所提方法优化精度提高3.91%,响应时间降低19.20%,算法收敛后受到干扰稳定性能提高3.84%。
Abstract:Aiming at the task assignment problem of the satellite cluster game, a task assignment method based on a multi-layer dung beetle optimization (MDBO) algorithm is studied in this paper. First, three optimization criteria satellite fuel consumption, orbital transfer time, and game benefits are considered, along with constraints such as tasks, fuel, and payload, to construct the optimization mathematical model. Then, the MDBO algorithm is designed to solve the problem, introducing the "Dung Beetle Bandit Particle" to address the issue of particle swarm algorithms easily converging to local optima. A multi-layer optimization mechanism is applied to decompose and reduce the dimensionality of the complex satellite game task allocation problem. The simulation results show that compared to the DBO algorithm, the proposed method improves optimization accuracy by 3.91%, reduces response time by 19.20%, and enhances the algorithm's stability under interference by 3.84% after convergence.
文章编号:20250207     中图分类号:V448    文献标志码:
基金项目:
引用文本:
张哲宇,张炎,肖冰,贾振帅.基于多层次蜣螂优化的卫星集群博弈任务分配方法[J].飞控与探测,2025,8(2):56-63.

分享按钮